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Abstract - This paper introduces a smart payment system designed to optimize the selection of payment service providers for 

each transaction, aiming to increase payment approval rates using dynamic programming. This solution is applicable to any 

business that processes payments, as an increase in overall approval rates can enhance cash flow and reduce payment-related 

costs. To ensure payment system reliability and avoid single points of failure, transactions are distributed among providers 

within specified thresholds, thereby balancing the traffic allocation. This factor is integrated into the optimization model. 

Through simulated data, the proposed solution demonstrates its effectiveness in increasing transaction approval rates by 

employing a smart optimization policy that selects actions in each state to maximize total rewards. The effectiveness of the 

presented approach is demonstrated by comparing different strategies; the results show that revising the traffic allocation daily 

can improve the overall reward by 8.1% for simulated data.  

Keywords - Dynamic Programming, Payment Optimization, Smart Payment Routing. 

1. Introduction  
Customer payments to merchants are typically routed 

through intermediaries known as Payment Service Providers 

(PSPs), who facilitate transactions on behalf of the merchants. 

Each transaction often presents a choice of multiple providers, 

and selecting the optimal provider for a given transaction 

based on its specific features is crucial. PSPs employ various 

techniques to ensure successful retrieval of funds from 

customer accounts, and they continuously upgrade their 

technology to improve transaction approval rates. The 

approval rate is the proportion of transactions approved by the 

payment system over the total number of transactions that 

were processed by the system. Therefore, it is in the 

merchant’s best interest to continually monitor the approval 

rates of different providers and allocate each transaction to the 

most effective one to maximize the overall transaction 

approval rates. Even a modest 1% increase in approval rates, 

achieved through this ongoing optimization process, can 

significantly boost the merchant’s cash flow. For instance, a 

business processing 100,000 transactions per day with an 

average transaction size of $50 would see an increase of 

$50,000 in daily cash flow with just a 1% improvement in 

approval rates. Additionally, providers charge merchants a fee 

for processing each transaction. By optimizing and increasing 

the approval rate, merchants can avoid the costs associated 

with multiple processing attempts for a single transaction in 

case of initial failures, leading to significantly lower 

transaction costs. This optimization is particularly beneficial 

for small to medium-sized merchants, for whom the reduction 

in costs and the increase in successful transactions can have a 

substantial financial impact. 

2. Problem 
This article addresses the decision-making problem faced 

by merchants in handling customer transactions. Each day, 

customers generate a large number of transactions while 

shopping with merchants. Each transaction is unique, 

identified by a specific transaction ID and characterized by 

various attributes such as card type (credit, debit, prepaid) and 

network (MasterCard, Discover, Visa, Amex). Crucially, each 

transaction has an associated amount that the customer owes 

the merchant, referred to as the transaction’s worth. Merchants 

have the option to route each transaction through one of 

multiple payment service providers. For simplicity, this article 

assumes that there are three fixed providers labelled as 1, 2, 

and 3. An effective dynamic payments system should assign 

each transaction to one of these providers according to a pre-

specified traffic allocation distribution to maximize the overall 

transaction approval rates. For example, if the traffic 

allocation distribution is 𝑝 = (0.7,0.2,0.1), then 70% of 

transactions are assigned to provider 1, 20% to provider 2, and 

10% to provider 3 in a random manner. The performance of 

each provider is evaluated based on the proportion of 

transactions that are successfully approved.  

http://www.internationaljournalssrg.org/
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The allocation of traffic to the providers is revised 

periodically, with the frequency of revision determined by the 

merchant’s transaction volume. For instance, a merchant 

processing 100,000 transactions daily has sufficient data 

points to revise the traffic allocation distribution daily with 

statistical significance. Based on this cadence, the traffic 

allocation distribution can be updated. This paper provides 

methodologies to: 

1. Ensure the traffic allocation distribution is enacted 

correctly, ensuring each transaction is randomly assigned 

to a provider as per the set distribution. This assumption 

is critical for the proposed payment optimization. 

2. Develop a payment optimization model.  

For validating the effectiveness of randomness in 

provider assignment for transactions and ensuring that the 

transaction distributions in real-time match the pre-specified 

distributions, statistical tests such as the chi-square goodness 

of fit and runs test can be employed. Developing an optimal 

strategy for payment provider assignment involves 

formulating a policy and objective. The objective is to increase 

the total number of approved transactions. The period for 

evaluating overall returns must be clearly defined, as it is a 

matter of policy. During this period, decisions are made 

periodically based on dynamic business scenarios, and 

appropriate actions are implemented. In this article, the period 

is taken as 250 days (considering weekdays over one year), 

and the policy is to allow decisions (actions) to change the 

assignment distribution every day so that the total rewards 

achieved each day over the planning horizon of 250 days is 

maximized. 

The business scenario at the beginning of each epoch 

(each day) is known as the state of the system. The state of the 

system for the problem in question at the beginning of any 

epoch is defined by the relative performance of the providers 

compared to their performance in the previous epoch. The 

optimization problem considered in this article involves 

defining and comparing a set of actions and evaluating 

different strategies in terms of their impact on overall returns 

over the planning horizon. At the start of each epoch, 

depending on the state of the system, an action is taken, 

resulting in a reward at the end of the epoch. The problem is 

to maximize the total rewards over the planning horizon. The 

state of the system at the beginning of any epoch depends on 

the state and the action of the previous epoch. The system 

states transition mechanism in practice is governed by the 

stochastic behavior of the system. One way of handling the 

problem is to consider a deterministic model by replacing the 

stochastic mechanism with expected behavior. The task of 

determining the sequence of actions to maximize the total 

reward is known as a dynamic programming problem. 

3. Related Work  
We focussed our literature survey on the application of AI 

and ML in enhancing smart payment solutions to boost 

transaction approval rates.  Bygari [6] combined static rules 

with supervised learning models, such as logistic regression 

and random forest classifiers, to forecast provider 

probabilities, resulting in a 4-6% increase in transaction 

success rates. The multi-armed bandit approach was 

demonstrated by Gefferie [7] to select the optimal provider in 

the e-commerce domain effectively. Dream 11 Engineering 

[8] conducted offline simulations of various bandit 

algorithms, including Epsilon Greedy and Upper-Confidence-

Bound (UCB), fine-tuning hyperparameters without the risks 

of real-time experimentation and achieved a significant uplift 

in the transaction success rates (approximately 0.92% monthly 

uplift).  

Further studies [9] and [10] highlight the necessity for 

smart payment systems capable of operating autonomously or 

with expert oversight, smartly analyzing elements such as 

transaction fees and success rates to choose the most efficient 

provider. These developments indicate a move towards 

autonomous, AI-powered solutions in global payment routing, 

focusing on improving user experience and operational 

efficiency. Lyft [11] implemented a reinforcement learning 

(RL) platform, utilizing contextual bandits to build out a 

multi-decision system that addresses similar optimization 

problems through online learning. In the realm of commerce 

and finance, multi-armed bandits have been applied to solve 

comparable optimization challenges for portfolio construction 

[1]. Contextual bandits in RL are becoming increasingly 

popular, with substantial theoretical development, including 

the Epoch-Greedy Algorithm by Langford [3] and the 

Thompson Sampling algorithm for stochastic multi-armed 

bandits by Agarwal [2]. 

Research [4] plays a critical role in evaluating 

computationally efficient and optimal contextual bandit 

methods, offering guidance for practitioners. It critiques the 

application of Upper Confidence Bounds (UCB) and 

Thompson Sampling in managing sparse, high-dimensional 

datasets due to their strong modelling assumptions and 

challenges in practical implementation. It also explores a 

confidence-based method incorporating LinUCB, an 

advancement of UCB. Another key study [5] devised a 

machine learning system specifically for contextual decision-

making, optimizing operations in environments like 

MSN.com. While these RL-based systems operate as 

independent decision-makers, their adoption requires 

significant engineering investment and a steep learning curve. 

3.1. Contributions 

This paper introduces the application of dynamic 

programming for developing an intelligent payment system. 

The proposed approach is accompanied by the corresponding 

code. Simulations have demonstrated the effectiveness of this 

methodology. The novelty of the tool lies in its simplicity of 

modelling approach, straightforward code, and ease of 

implementation and integration into existing systems. 
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4. Data Collection and Preprocessing 
Real-world payment data typically encompass a rich set 

of variables that allow for the exploration and identification of 

relationships among features. Examples of such features 

include transaction card type, network, time of day, day of the 

week, specific business characteristics, customer 

segmentation based on type, location, transaction amount, and 

more. Initial data analysis can begin with examining the 

proportion of transactions assigned to providers and their 

corresponding approval rates. This analysis can reveal trends 

in approval rates based on the allocation of transactions to 

different providers. By utilizing historical data and additional 

features, the relationship between these variables can be 

modelled effectively. A preliminary step involves calculating 

simple descriptive statistics, such as the mean and standard 

deviation of the approval rates, both overall and for each 

categorical variable. This can help uncover trends. For 

instance, this may uncover differences in provider 

performance across various geographies. 

Examining approval rates on a weekly basis for each 

provider can reveal if changes in approval rates follow similar 

trends across providers (e.g., simultaneous increases or 

decreases). Additionally, plotting provider performance over 

time and by geography with respect to the number of 

transactions can indicate geography-dependent performance, 

which may be identified through clustering. Autocorrelation 

functions are valuable performance measures. For example, 

they can be used to determine if the number of transactions 

and approval rates remain relatively stable from day to day. If 

a provider had a certain approval rate on a particular day, it 

could be examined whether a similar approval rate is likely on 

the following day. These data analyses are essential in 

exploring strategies for optimization. 

5. Methodology  
5.1. Validation of Data Distribution and Independence 

Assumptions 

Customer transactions to merchants vary depending on 

the size and nature of the merchant. When selecting a provider 

for a transaction, the requirement is that the provider should 

be randomly selected according to the pre-specified traffic 

allocation distribution. It is necessary to validate if these best 

engineering practices are followed based on the data collected 

from the payment system. Consider a situation where there are 

three providers labelled as 1, 2, and 3. Let 𝑁 be the total 

number of transactions to be distributed to the three providers 

on any day according to a pre-specified distribution, say 𝑝 =
 (𝑝1, 𝑝2, 𝑝3). To assign the transactions randomly for 𝑖𝑡ℎ 

transaction, 𝑖 =  1, 2, … , 𝑁, pick a random number 𝑥𝑖 from 

{1, 2, 3} so that the probability of 𝑥𝑖  =  𝑗 is equal to 𝑝𝑗 , 𝑗 =  1 

2, 3. Denoting the distribution of 𝑥𝑖 by 𝐹, , 𝑥1, 𝑥2, … . , 𝑥𝑁, is a 

sequence of random variables from 𝐹. If the transactions are 

assigned independently, then the sequence 𝑥1, 𝑥2, … . , 𝑥𝑁 is a 

sequence of 𝑖. 𝑖. 𝑑 (independent and identically distributed) 

random variables. To validate the random allocation 

hypothesis (i.e., allocation is made independently), a 

subsequence 𝑥𝑖+1, 𝑥𝑖+2, … . , 𝑥𝑖+𝑛 where 𝑖 is any random 

number picked randomly from 1 𝑡𝑜 𝑁 − 𝑛, which can be used. 

For ease of notation, the subsequence 𝑥𝑖+1, 𝑥𝑖+2, … . , 𝑥𝑖+𝑛 shall 

be denoted by 𝑥1, 𝑥2, … . , 𝑥𝑛. One way to validate the 

hypothesis is to plot the autocorrelation function (ACF) of the 

sequence 𝑥1, 𝑥2, … . , 𝑥𝑛. An alternative approach for this 

validation problem using Markov Chains is proposed below. 

A sequence of random variables {𝑢𝑘, 𝑘 =  1,2, … } is a 

Markov chain with one-step stationary transition probabilities 

if:  

𝑃𝑟𝑜𝑏(𝑢𝑘+1  =  𝑗 | 𝑢𝑘  =  𝑗𝑘, 𝑢𝑘−1  =  𝑗𝑘−1, … , 𝑢1  =  𝑗1)  =
 𝑃𝑟𝑜𝑏(𝑢2  =  𝑗 | 𝑢1  =  𝑗𝑘)  

holds for all 𝑘 and all states 𝑗, 𝑗𝑘 , 𝑗𝑘−1, … , 𝑗1. The matrix 𝑃 =
 (𝑝𝑖𝑗), where (𝑖, 𝑗) − 𝑡ℎ element 𝑝𝑖𝑗  =  𝑃𝑟𝑜𝑏(𝑢2  =  𝑗 | 𝑢1  =

 𝑖), and 𝑖 and 𝑗 are states that are called the one-step transition 

matrix of the Markov chain. For background on Markov 

chains, refer to [15] [16]. 

If the sample assignment sequence x1, x2, … satisfies the 

hypothesis with the pre-specified distribution 𝑝 =
 (𝑝1, 𝑝2, 𝑝3),  then it forms a Markov chain with state space 

𝑆 =  {1,2,3} and stationary transition probabilities. Since any 

subsequence of the Markov Chain is also a Markov Chain, 

𝑥1, 𝑥2, … . , 𝑥𝑛 is also a Markov Chain. In this case, each row 

of the one-step transition matrix is 𝑝. In this case, each row of 

the one-step transition matrix is 𝑝. This fact can be utilized to 

test the hypothesis of randomness and distribution fit in the 

assignment. Henceforth, this hypothesis will be referred to as 

𝐻. In other words, 𝐻 indicates that 𝑥1, 𝑥2, … . , 𝑥𝑛 is an 𝑖. 𝑖. 𝑑 

sequence from 𝐹. More precisely, the probabilities (or the 

corresponding frequencies) of the one-step transition matrix 

are estimated and compared with their expected values under 

𝐻. 

The two methods are compared using simulated data. 

Two sequences are simulated – one satisfying 𝐻, and the other 

violating 𝐻. Simulating a sequence satisfying 𝐻 is 

straightforward, but simulating a sequence under violation of 

𝐻 requires a procedure. This can be done by simulating a 

sequence from a Markov chain with a one-step transition 

matrix having distinct rows. 

For this problem, the three rows of the one-step transition 

matrix are taken as follows: the first row as q1 = (0.75, 

0.10,0.15), the second row as q2 = (0.70, 0.20, 0.10), and the 

third row as q3 = (0.70, 0.15, 0.10). This setup ensures that the 

simulated sequence violates 𝐻. Python code for simulating the 

data is provided in the Appendix. Two sequences are 

simulated, one satisfying 𝐻 and the other violating it. The 

autocorrelation functions (ACFs) of the two sequences are 

shown in Figure 10. In both cases, all the autocorrelations are 

within ±1.96 standard deviation limits, indicating no 

substantial evidence for suspecting non-independence. 
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Fig. 1 ACFs of i.i.d and non-i.i.d sequences 

To apply the Markov chain approach, the one-step 

transition frequencies are computed (see the Python code for 

obtaining the transition frequencies and one-step transition 

probabilities in Subsection 5.2). The top tables in Figure 11 

present the transition frequencies. The corresponding 

expected frequencies are computed in the tables below them. 

To test the match between observed and expected 

frequencies, the chi-square statistic is computed. The chi-

square statistics ∑(𝑂𝑖𝑗 −  𝐸𝑖𝑗)2 / 𝐸𝑖𝑗 values are calculated for 

each transition frequency and listed in Figure 2.  

This follows an approximate chi-square (χ2) distribution 

with 6 degrees of freedom with 95th percentile 13.27. From the 

results, the test rejects 𝐻 for the non-𝑖. 𝑖. 𝑑 sequence, while it 

fails to reject 𝐻 for the 𝑖. 𝑖. 𝑑 sequence. 

Table 1. Chi-square test for i.i.d and non-i.i.d sequences 

Observed Transitions 

(i.i.d): 

Observed Transitions 

(non-i.i.d): 

1006 284 124 1112 132 241 

277 92 38 153 51 17 

131 31 16 220 38 35 

Expected Transitions 

(i.i.d): 

Expected Transitions 

(non-i.i.d): 

989.8 282.8 141.4 1039.5 297 148.5 

284.9 81.4 40.7 154.7 44.2 22.1 

124.6 35.6 17.8 205.1 58.6 29.3 

Chi-square Statistic (i.i.d): 5.30 
Chi-square Statistic 

(non-i.i.d): 166.02 

5.2. Optimization of Total Rewards using Dynamic 

Programming Model 

Payment optimization, which aims to increase the total 

number of approved transactions, is explored in this section 

using two different strategies adopting dynamic 

programming: the daily strategy and the fortnightly strategy. 

In the daily strategy, the traffic allocation distribution is 

revised each day, while in the fortnightly strategy, it is revised 

every two weeks. The state space, action space, rewards, and 

the chance mechanism that governs the movement of the 

system are identified. A simulation model will be used to 

generate data for comparison purposes. The dynamic 

programming model is employed to compare two strategies.  

In a dynamic programming problem, the system begins in 

the state. 𝑠0 at time 0, and an action 𝑎0 is taken. This results 

in a reward 𝑟0, and the system transitions to the state 𝑠1 at time 

1. Based on 𝑠1, an action 𝑎1 is taken, resulting in a reward 𝑟1 

and a transition to a state 𝑠2 at time 2. This process continues 

until time 𝑇 –  1. The final action 𝑎𝑇−1 is taken at the 

beginning of time 𝑇 − 1, and a reward 𝑟𝑇−1 is collected at the 

end of time 𝑇 − 1 or equivalently at the beginning of time 𝑇, 

where the system reaches state 𝑠𝑇. The total reward at this final 

state is given by: 𝑅(𝑠𝑇) = ∑ 𝑟𝑡
𝑇−1
𝑡 = 0 . The objective is to choose 

the sequence of actions. 𝑎0, 𝑎1, . . . . , 𝑎𝑇−1 to maximize 𝑅(𝑠𝑇) 

over, all possible states 𝑠𝑇. 

5.3. Modelling Transaction Allocation Problem 

The transaction allocation problem is described as 

follows. Time units are defined as days, and the planning 

horizon consists of the working days in a year, represented by 

𝐻 =  {0,1,2, … . , 𝑇}, where 𝑇 may be considered to be 250 

(number of weekdays in a year). The system is defined as 

follows: On day 0, the state of the system is 𝑠0, with a 

probability distribution 𝑝0  =  (𝑝1
0, 𝑝2

0, 𝑝3
0) and the 

corresponding approval rate vector 𝑞−1 are associated with it. 

The vectors 𝑝0 and 𝑞−1 represent the previous allocation 

vector and the corresponding approval proportions, 

respectively. Let 𝑁0 be the number of transactions to be 

distributed to the providers on day 0. On any given day, the 

system can be in one of 8 possible states derived from the 

performances of the providers. Let 𝑞𝑑 =  (𝑞𝑑
1 , 𝑞𝑑

2, 𝑞𝑑
3), where 

𝑞𝑑
𝑖 , is the proportion of approved transactions assigned to 

provider 𝑖 on day 𝑑, with 𝑑 =  0, 1, 2, …. The system states 

are defined based on these performance measures. The system 

states are defined as: 

State 1 State of the system is 1 if 𝑞1
𝑑  ≥  𝑞1

𝑑−1, 𝑞2
𝑑  ≥

 𝑞2
𝑑−1, 𝑞3

𝑑  ≥  𝑞3
𝑑−1, 

State 2 if 𝑞1
𝑑  ≥  𝑞1

𝑑−1, 𝑞2
𝑑  ≥  𝑞2

𝑑−1, 𝑞3
𝑑  <  𝑞3

𝑑−1, 

State 3 if 𝑞1
𝑑  ≥  𝑞1

𝑑−1, 𝑞2
𝑑  <  𝑞2

𝑑−1, 𝑞3
𝑑  ≥  𝑞3

𝑑−1, 

State 4 if 𝑞1
𝑑  ≥  𝑞1

𝑑−1, 𝑞2
𝑑 <  𝑞2

𝑑−1, 𝑞3
𝑑  <  𝑞3

𝑑−1, 

State 5 if 𝑞1
𝑑  <  𝑞1

𝑑−1, 𝑞2
𝑑  ≥  𝑞2

𝑑−1, 𝑞3
𝑑  ≥  𝑞3

𝑑−1, 

State 6 if 𝑞1
𝑑  <  𝑞1

𝑑−1, 𝑞2
𝑑  ≥  𝑞2

𝑑−1, 𝑞3
𝑑  <  𝑞3

𝑑−1, 

State 7 if 𝑞1
𝑑  <  𝑞1

𝑑−1, 𝑞2
𝑑  <  𝑞2

𝑑−1, 𝑞3
𝑑  ≥  𝑞3

𝑑−1, and 

State 8 if 𝑞1
𝑑  <  𝑞1

𝑑−1, 𝑞2
𝑑  <  𝑞2

𝑑−1, 𝑞3
𝑑  <  𝑞3

𝑑−1. 
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The states are identified with triplets of signatures as 

follows: state 1 with (+ + +), state 2 with (+ + −), state 3 

with (+ − +), state 4 with (+ − −), state 5 with (− + +), 

state 6 with (+ + +), state 7 with (− − +), and state 8 with 

(− − −). The action space consists of making a small 

perturbation to an allocation distribution at hand, restricted to 

only seven actions. If 𝑝 =  (𝑝1,  𝑝2, 𝑝3) is an allocation 

probability vector, then seven probability vectors are derived 

from 𝑝, one according to each action. The actions are 

described as follows, using the perturbation parameter 𝛿, a 

prefixed small positive number. 

Action 1: leaves p unchanged. 

Action 2: The perturbed �̅� is given by �̅�1  =  𝑝1  +
𝛿 𝑝3𝑝1 (𝑝1  +  𝑝2)⁄ , 𝑝3̅̅ ̅  =  (1 −  𝛿) 𝑝3, and �̅�2  =  1 −  �̅�1 −
 �̅�3. 

Action 3: �̅�1  =  𝑝1  + 𝛿 𝑝2𝑝1 (𝑝1  +  𝑝3)⁄ , 𝑝2̅̅ ̅  =  (1 −
 𝛿) 𝑝2, and �̅�3  =  1 −  �̅�1 − �̅�2 

Action 4: 𝑝1̅̅̅  =  (1 −  𝛿) 𝑝1 , 𝑝2̅̅ ̅  =  𝑝2  + 𝛿 𝑝2𝑝1 (𝑝2  +  𝑝3)⁄  

and �̅�3  =  1 −  �̅�1 − �̅�2. 

Action 5: 𝑝1̅̅̅  =  (1 −  
𝛿

2
) 𝑝1 , 𝑝3̅̅ ̅  =  (1 −  

𝛿

2
) 𝑝3 and �̅�2  =

 1 −  �̅�1 − �̅�3. 

Action 6: 𝑝1̅̅̅ = (1 −
𝛿

2
) 𝑝1 , 𝑝2̅̅ ̅ = (1 −

𝛿

2
) 𝑝2, and �̅�3  =  1 −

 �̅�1 −  �̅�2. 

Action 7: 𝑝2̅̅ ̅ = (1 −
𝛿

2
) 𝑝2, 𝑝3̅̅ ̅ = (1 −

𝛿

2
) 𝑝3, and �̅�1  =  1 −

 �̅�2 −  �̅�3. 

 
Fig. 2 Provider Performance Curves. The parameters of the logistic 

function are: : 𝒂𝟏 =  𝟐,  𝒃𝟏 =  − 𝟏,  𝒄𝟏 =  𝟎. 𝟑,  𝒂𝟐 =  𝟏,  𝒃𝟐 =  −
𝟎. 𝟗,  𝒄𝟐 =  𝟎. 𝟔 𝒂𝒏𝒅 𝒂𝟑 =  𝟎,  𝒃𝟑 =  − 𝟎. 𝟑,  𝒄𝟑 =  𝟎. 𝟗 

To analyze the system and the strategies, the approval 

proportions are required and are simulated. The approval rate 

𝑞𝑖 of provider, 𝑖 is assumed to be a function of 𝑝𝑖 , the 

proportion of transactions assigned. Since 𝑞𝑖  values are 

between 0 and 1, logistic functions of the form: 𝑞𝑖(𝑝)  =
 𝑒𝑥𝑝(𝑎𝑖  +  𝑏𝑖𝑝 + 𝑐𝑖𝑝

2) / (1 +  𝑒𝑥𝑝(𝑎𝑖  +  𝑏𝑖𝑝 +  𝑐𝑖𝑝2)) 

are used. Here 𝑎𝑖 , 𝑏𝑖 , 𝑎𝑛𝑑 𝑐𝑖  are chosen differently for each 

provider 𝑖, where 𝑖 = 1,2,3. The choice of these parameters 

and the corresponding graphs of the functions are shown in 

Figure. The number of transactions each day, 𝑁𝑑, also needs 

to be simulated. For simplicity, 𝑁𝑑 values are randomly 

simulated from the interval 1000 to 3000. The formula for the 

reward for day 𝑑 action (sum of the rewards from the three 

providers) is given by: 𝑁𝑑  ∑ 𝑝𝑑+1
𝑖 𝑞𝑑

𝑖3
𝑖 = 1 .  

5.4. Understanding the Extent of Action Space  

As the number of days in the planning horizon increases, 

the number of actions grows exponentially. This can be 

illustrated as follows: at the beginning of day 0, 𝑝0 is the 

previous allocation, and 𝑞−1 represents the corresponding 

approval proportions. Applying the 7 actions to 𝑝0 results in 7 

new allocation distributions and their corresponding approval 

proportions. Comparing these approval proportions with 𝑞−1 

will determine the initial states of day 1, potentially leading to 

7 distinct allocation distributions at the beginning of day 1. 

Applying the 7 actions to each of these distributions results in 

up to 49 possible initial distributions at the beginning of day 

2. Continuing this calculation, the number of possible initial 

distributions at the beginning of day 𝑑 is 7𝑑. Handling this 

exponential growth is challenging. This is where the dynamic 

programming approach proves beneficial. The algorithm for 

obtaining the optimal solution under the considered action 

space will be illustrated with an example. For the purpose of 

illustration, the planning horizon is restricted to 𝑇 =  1, 

meaning the system concludes at the end of day 1 or, 

equivalently, at the beginning of day 2. The objective is to 

determine the actions that lead to the maximum total reward. 

5.4.1. Example 

Consider the case where 𝑇 =  2, 𝑁0  =  2400, 𝑎𝑛𝑑 𝑝0  =
 (0.370, 0.365, 0.265). From 𝑝0, the approval rates 𝑞−1  =
 (0.84, 0.68, 0.5) are computed. The result of applying the 7 

actions to 𝑝0 are summarized in Table 2. Starting with 𝑝0  =
 (0.370, 0.365, 0.265) and applying action 2, the providers 

are assigned transactions in the proportions 𝑝1  =
 (0.383, 0.378, 0.239) (as shown in the row corresponding to 

action 2 in the table). The approval proportions for 𝑝1 are 

𝑞0  =  (0.84, 0.678, 0.495). Comparing these with 𝑞−1, the 

resulting state of the system at the beginning of day 1 is 8. The 

corresponding reward for day 0 from action 2 is 1671. The 

results of other actions can be observed in the table. Notably, 

actions 1 and 6 lead to the same state, namely, state 1. 

However, comparing the corresponding rewards, 1658 and 

1639, action 1 is preferable to action 6 for reaching state 1 on 

day 1. 
Table 2. Results of applying the 7 actions on day 1 

 Note : A: action, RS: resulting state, TR: total rewards 

 Resulting allocation Resulting approval rate   

A 
 

    
 

RS TR 

1 0.37 0.37 0.27 0.84 0.68 0.50 1 1658 

2 0.38 0.38 0.24 0.84 0.68 0.50 8 1671 

3 0.39 0.33 0.28 0.84 0.68 0.50 5 1662 

4 0.33 0.39 0.28 0.85 0.68 0.50 3 1639 

5 0.35 0.40 0.25 0.84 0.68 0.50 4 1655 

6 0.35 0.35 0.30 0.84 0.68 0.50 1 1639 

7 0.40 0.35 0.25 0.84 0.68 0.50 6 1673 

𝑝1̅ 𝑝2̅̅ ̅ 𝑝3̅̅ ̅ 𝑞1̅ 𝑞2̅̅̅ 𝑞3̅̅̅ 
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Fig. 3 Schematic procedure for optimal solution. The 𝒑𝒅𝒔 is the 

allocation distribution of state 𝑠 of Day 𝑑. The 𝒑𝟐𝟕  is obtained by 

applying action 5 to 𝒑𝟏𝟖. The edges from state 4 of Day 1 to other states 

of Day 2 are not shown for better presentation. Dropping these edges 

does not impact the computation of the rewards of states of Day 2 as 

they are dominated by others while computing reward attributes of 

states of Day 2. 

5.5. Algorithm for Obtaining Optimal Solution 

The algorithm is based on Bellman’s optimality principle, 

which states that an optimal policy has the property that, 

regardless of the initial state and initial decision, the 

subsequent decisions must constitute an optimal policy with 

respect to the state resulting from the first decision [12]. The 

algorithm will be described using the example provided 

earlier. Refer to Figure 13 for cross-referencing. A graph with 

nodes and edges represents the system [13] [14]. Nodes 

represent the states of the system on different days, while the 

edges represent the actions. The rewards of the actions, which 

depend on the initial state and the action taken, are indicated 

on the edges along with the actions. 

5.5.1. Algorithm 

Step 1 Start with 𝑠0 of Day 1. Set its action as “None” and its 

reward as 𝑅 =  0. 

Step 2 Apply action 𝑎 on 𝑝0 and determine the modified 

allocation 𝑝 and set it as 𝑝1(𝑎), call it 𝑞0(𝑎), and determine 

the state (𝑠𝑎) comparing it with 𝑞−1. Compute the reward 

𝑅(𝑠0, 𝑎).  Create an edge-connecting 𝑠0 𝑎𝑛𝑑 𝑠𝑎  and label the 

edge with action 𝑎 and reward 𝑅(𝑠0, 𝑎). 

Step 3 Repeat Step 2 for all 7 actions and prepare a list of 

states for Day 1. The list of states for the example is shown 

under Day 1 in the Figure 13. Note there are only six states in 

Day 1 as actions 1 and 6 lead to the same state 1.  

Step 4 Label the states of Day 1 with four attributes 

(𝑠0, 𝑎, 𝑝1𝑠, 𝑟) as follows. Consider a state 𝑠1 of Day 1. List all 

actions on 𝑝0 that led to state 𝑠1. Suppose these actions are 

𝑎1, 𝑎2, . . . , 𝑎𝑘. Suppose j is such that 𝑅(𝑠0, 𝑎𝑗)  =

 𝑚𝑎𝑥1≤𝑖≤𝑘𝑅(𝑠0, 𝑎𝑖). If there are ties, break it arbitrarily. The 

four attributes of 𝑠1 are: the first one is 𝑠0, the second one is 

𝑎𝑗, the third is 𝑝1𝑠1  and the fourth is 𝑅(𝑠0, 𝑎𝑗). For the example 

from Figure 13, consider 𝑠1  =  1. For this 𝑘 =  2, 𝑎1  =
 1, 𝑎2  =  6 𝑎𝑛𝑑 𝑗 =  1 𝑤𝑖𝑡ℎ  𝑅(𝑠0, 𝑎1). =  1658. Thus, state 

1 is labelled with (𝑠0, 1,  𝑝1𝑠0 , 1685). Note that  𝑝1𝑠0  is the 

allocation distribution obtained by applying action 1 on 𝑠0. All 

other states of day 1 (3, 4, 5, 6 and 8) have only one action 

leading to them, and therefore, their reward attributes are the 

same as those of action rewards. The labels of these states are 

shown in Figure 13. 

Step 5 The general computational steps for day 𝑑 where 𝑑 ≥
 2. Suppose all states up to day d-1 are labelled. The procedure 

for labelling the states of day 𝑑 with the four attributes 

mentioned previously is explained. Firstly, all 7 actions are 

applied to all states of day 𝑑 –  1, generating a list of all 

possible states for day 𝑑. Consider any state 𝑠𝑑 of day 𝑑. Let 

𝑎1, 𝑎2, . . . , 𝑎𝑘 be the actions leading to 𝑠𝑑. Let 𝑟𝑠𝑖  be the reward 

attribute of the tail node of 𝑎𝑖, where 𝑖 =  1, 2, . . . , 𝑘. Let 𝑟𝑎𝑖  

be the action reward of the action 𝑎𝑖 on its tail node. Let 𝑗 be 

such that:  

𝑟𝑠𝑗  +  𝑟𝑎𝑗  ≥  𝑟𝑠𝑖  +  𝑟𝑎𝑖  𝑓𝑜𝑟  𝑖 =  1, 2, . . . , 𝑘.                   (1) 

Set the attributes of 𝑠𝑑 as follows: the first attribute is the 

tail node of 𝑎𝑗, the second attribute is 𝑎𝑗, and the third attribute 

is 𝑝𝑑𝑠𝑑, the allocation distribution resulting from 𝑎𝑗 on its tail 

node. The fourth attribute of 𝑠𝑑  𝑖𝑠 𝑟𝑠𝑗  +  𝑟𝑎𝑗 . As an 

illustration, consider 𝑑 =  2 (day 2) and 𝑠𝑑  =  8. There are 

four actions, 𝑎1  =  2, 𝑎2  =  2, 𝑎3  =  2, 𝑎4  =  2 (in Figure 

13, edges from state 4 of day 1 to states of day 2 are not shown; 

refer to the caption for further clarification) leading to state 8. 

Note that all these actions are equal to 2 (see the figure) but 

have different tail nodes. The tail nodes of 𝑎1,  𝑎2,  𝑎3 ,  𝑎4 are 

1,3,4, and 5, respectively. Additionally, 𝑟𝑠1  =  1658, 𝑟𝑎1  =
 1688, 𝑟𝑠2  =  1639, 𝑟𝑎2  =  1683, 𝑟𝑠3  =  1655, 𝑟𝑎3  =
 1688, 𝑟𝑠4  =  1662, 𝑎𝑛𝑑 𝑟𝑎4  =  1702. Here, 𝑗 =  4, 

meaning that action 2 from node 5 of day 1 maximizes 𝑟𝑠𝑖  +
 𝑟𝑎𝑖  with 𝑟𝑠4  +  𝑟𝑎4  =  1662 +  1702 =  3364. Therefore, 

the attributes of state 8 of day 2 are (5, 2, 𝑝28, 3364). This 

process of labelling states continues until all states of day 𝑇 

are completed. 

Step 6 Identify the state of day 𝑇 with the maximum reward 

attribute. This value is the optimum objective for the problem. 

The sequence of optimal actions, representing the optimal 

solution, is traced back from the optimal state of day 𝑇. For 

the example with 𝑇 = 2, the optimal state is 8 with an optimal 

total reward of 3364. The optimal solution is traced back as 

follows: state 8 of day 2 is reached from state 5 with action 2. 

This information is found in the label of state 8 of day 2. From 

the label of state, 5 of day 1, state 5 is reached from 𝑠0 with 

action 3.  
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Fig. 4 Python Output. The left panel presents details up to the first three nodes of the optimal path, while the right panel shows the last three nodes. 

The optimal allocations are 𝑝15  =  (0.391, 0.329, 0.280) 

on day 0 (obtained by applying action 3 to 𝑝0  =
 (0.37, 0.365, 0.265)) and (0.407, 0.341, 0.252) (obtained by 

applying action 2 to 𝑝15). Thus, the optimal sequence of 

actions, given the initial state 𝑝0, is (3,2), resulting in a 

maximum total reward of 3364. 

5.5.2. Python Program 

A Python program was developed to implement the 

algorithm for payment optimization using a dynamic 

programming approach. This program facilitates the 

evaluation of different strategies. Initially, the objective was 

to compare two strategies: revising transaction allocation daily 

versus revising it once every two weeks. The program is 

designed to allow for more flexible options, such as revising 

the allocation every two days, every three days, and so on. To 

illustrate the program’s output, a sample output is presented in 

Figure 14. 

5.6. Results 

Using the provided Python code, a comparison of 

strategies is conducted. It is important to note that the optimal 

reward is achieved with the daily strategy, which involves 

changing the traffic allocation to providers every day. This 

reward is always greater than or equal to the optimal reward 

achieved with strategies where the traffic allocation is changed 

at longer intervals. This is because the set of options available 

under the less frequent strategies is a subset of those available 

under the daily strategy. The model and formulation 

considered in this paper quantify the magnitude of the gap 

between the optimal rewards. To compare different strategies, 

the number of transactions is kept constant at 2400. Within a 

total planning horizon of 250 days, results were compared 

across five different strategies: revising every day, revising 

once every five days, revising once every ten days, revising 

once every fifteen days, and revising once every twenty-five 

days. The results, presented in Table 3, indicate a significant 

improvement of 8.1%. 

6. Conclusion  
The payments optimization problem can significantly 

enhance transaction approvals for businesses, thereby 

increasing cash flow and improving the chances of transaction 

approval on the first attempt. This, in turn, reduces additional 

provider costs associated with retrying transactions in case of 

failures. Smart payments, where the system learns to take 

actions based on the current state, represent an advanced 

capability that many businesses aim to achieve. Solutions for 

smart payments typically involve reinforcement learning 

models, such as multi-armed bandits or contextual bandits, 

which require substantial setup engineering costs and have a 

steep learning curve. 

 Alternatives to these models include supervised learning 

solutions, which often demand extensive upkeep due to data 

drift and continuous modelling. This paper presents a novel 

dynamic programming approach to modelling the payments 

optimization problem, demonstrated through a simulated use 

case. The provided code is designed to be simple yet effective, 

allowing experimentation to determine the best initial state 

and optimal actions for each state to maximize transaction 

approval rates. The effectiveness of this approach is 

demonstrated by comparing different strategies; the results 

show that revising the traffic allocation daily can improve the 

overall reward by 8.1% for the considered simulated data.This 

approach offers a more accessible and maintainable 

alternative to traditional reinforcement learning models for 

businesses seeking to optimize their payment systems. 
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Appendix 1 

Provider Performance Curves 

import numpy as np 

import plotly.graph_objs as go 

 

# Define the logistic functions 

def logistic_function(p, f, c): 

    return c + np.exp(f) / (1 + np.exp(f)) 

 

def f1_f2_f3(p: np.ndarray) -> np.ndarray: 

    """ 

    Compute f1, f2, f3 based on the input array p of size 3. 

 

    Args: 

    p (np.ndarray): Input array of size 3. 

 

    Returns: 

    np.ndarray: Output array of size 3 containing f1, f2, f3. 
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    """ 

    f1 = -1 + 5 * p[0] + 50 * (p[0] - 0.4)**2 

    f2 = -1 + 5 * p[1] - 50 * np.abs(p[1] - 0.4)**1.2 

    f3 = 0.7 - 50 * (p[2] - 0.4)**2 

 

    return np.array([f1, f2, f3]) 

 

# Define the constants 

# c = np.array([0.1, 0.3, 0.08]) 

c = np.array([0,0,0]) 

 

# Generate a range of p values 

p_values = np.linspace(0, 1, 100) 

p_vectors = np.vstack((p_values, p_values, p_values)).T 

 

# Compute the logistic function values for each p 

q_values = np.apply_along_axis(lambda p: logistic_function(p, f1_f2_f3(p), c), 1, p_vectors) 

 

# Create traces for each logistic function 

trace1 = go.Scatter(x=p_values, y=q_values[:, 0], mode='lines', name='Provider 1', 

line=dict(color='blue')) 

trace2 = go.Scatter(x=p_values, y=q_values[:, 1], mode='lines', name='Provider 2', 

line=dict(color='red')) 

trace3 = go.Scatter(x=p_values, y=q_values[:, 2], mode='lines', name='Provider 3', 

line=dict(color='green')) 

 

# Create the layout 

layout = go.Layout( 

    title=dict( 

        text= “Provider Performance Curves”, 

        x=0.5, 

        xanchor='center’ 

    ), 

    # xaxis range = range=[0.175, 0.75] 

    xaxis=dict(title="Proportion of Transactions (p)", range = [0.2,0.6]), 

    # yaxis range=[0.27, 1.1] 

    yaxis=dict(title="Approval Rate (q)"), 

    showlegend=True 

) 

 

# Create the figure 

fig = go.Figure(data=[trace1, trace2, trace3], layout=layout) 

 

# Show the plot 

fig.show() 



Manasa Gudimella & Aditya Gudimella / IJCTT, 72(7), 32-52, 2024 

 

41 

 

Test 𝒊. 𝒊. 𝒅 assumption 

import numpy as np 

 

# Set the random seed for reproducibility 

RANDOM_SEED = 2023 

np.random.seed(RANDOM_SEED) 

 

# Function to simulate a sequence satisfying hypothesis H (iid sequence) 

def simulate_iid_sequence(length, distribution): 

    """ 

    Simulate a sequence of given length that satisfies hypothesis H. 

 

    Args: 

    length (int): Length of the sequence. 

    distribution (list): Pre-specified distribution. 

 

    Returns: 

    np.array: Simulated iid sequence. 

    """ 

    return np.random.choice([1, 2, 3], size=length, p=distribution) 

 

# Function to simulate a sequence violating hypothesis H (Markov chain sequence) 

def simulate_markov_sequence(length, transition_matrix): 

    """ 

    Simulate a sequence of a given length that violates hypothesis H using a Markov chain. 

 

    Args: 

    length (int): Length of the sequence. 

    transition_matrix (np.array): One-step transition matrix. 

 

    Returns: 

    np.array: Simulated Markov sequence. 

    """ 

    sequence = np.zeros(length, dtype=int) 

    # Initialize the first state randomly 

    sequence[0] = np.random.choice([1, 2, 3]) 

     

    for i in range(1, length): 

        current_state = sequence[i-1] 

        # Choose the next state based on the transition matrix 

        sequence[i] = np.random.choice([1, 2, 3], p=transition_matrix[current_state-1]) 

     

    return sequence 
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# Length of the sequences 

length = 2000 

 

# Pre-specified distribution p 

p = [0.7, 0.2, 0.1] 

 

# Transition matrix to simulate a sequence violating hypothesis H 

transition_matrix = np.array([ 

    [0.75, 0.10, 0.15],  

    [0.70, 0.20, 0.10],  

    [0.70, 0.15, 0.15] 

]) 

 

# Simulate sequences 

sequence_iid = simulate_iid_sequence(length, p) 

sequence_markov = simulate_markov_sequence(length, transition_matrix) 

 

# Display the first 10 elements of each sequence as a sample 

print("First 10 elements of the IID sequence:", sequence_iid[:10]) 

print("First 10 elements of the Markov sequence:", sequence_markov[:10]) 
 

# Plot Autocorrelation functions 

import numpy as np 

import plotly.graph_objs as go 

from scipy.signal import correlate 

 

# Function to compute and plot autocorrelation 

def plot_autocorrelation(sequence, title): 

    # Compute autocorrelation 

    autocorr = correlate(sequence - np.mean(sequence), sequence - np.mean(sequence), 

mode='full') 

    autocorr = autocorr[autocorr.size // 2:] 

    autocorr /= autocorr[0] 

 

    # Compute the standard deviation for the sequence 

    std_dev = np.std(sequence) 

    conf_interval = 1.96 / np.sqrt(len(sequence)) 

 

    # Create the plot 

    trace = go.Scatter( 

        x=np.arange(len(autocorr)), 

        y=autocorr, 

        mode='markers+lines', 
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        name='ACF’ 

    ) 

 

    # Create the lines for ±1.96 standard deviations 

    upper_bound = go.Scatter( 

        x=np.arange(len(autocorr)), 

        y=np.ones(len(autocorr)) * conf_interval, 

        mode='lines', 

        line=dict(color='red', dash='dash'), 

        name='+1.96 SD’ 

    ) 

 

    lower_bound = go.Scatter( 

        x=np.arange(len(autocorr)), 

        y=-np.ones(len(autocorr)) * conf_interval, 

        mode='lines', 

        line=dict(color='red', dash='dash'), 

        name='-1.96 SD’ 

    ) 

     

    layout = go.Layout( 

        title=dict( 

            text=title, 

            x=0.5,  # Center the title 

            xanchor='center’ 

        ), 

        xaxis=dict(title='Lag'), 

        yaxis=dict(title='Autocorrelation'), 

        showlegend=False 

    ) 

     

    fig = go.Figure(data=[trace, upper_bound, lower_bound], layout=layout) 

    fig.show() 

 

# Plot autocorrelation for both sequences 

plot_autocorrelation(sequence_iid[:30], 'Autocorrelation of i.i.d Sequence') 

plot_autocorrelation(sequence_markov[:30], 'Autocorrelation of non i.i.d Sequence') 
 

 

Chi – Square Statistic 

import numpy as np 

from collections import Counter 
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# Pre-specified distribution p 

p = [0.7, 0.2, 0.1] 

 

def compute_transition_matrix(sequence): 

    """ 

    Compute the transition matrix from the given sequence. 

 

    Args: 

    sequence (list or np.array): Sequence of states. 

 

    Returns: 

    np.array: Transition matrix. 

    """ 

    transitions = Counter((sequence[i], sequence[i+1]) for i in range(len(sequence) - 1)) 

    total_transitions = {k: sum(v for kk, v in transitions.items() if kk[0] == k) for k in 

range(1, 4)} 

     

    transition_matrix = np.zeros((3, 3), dtype=int) 

     

    for (i, j), count in transitions.items(): 

        transition_matrix[i-1, j-1] = count 

     

    return transition_matrix, total_transitions 

 

def compute_expected_transitions(total_transitions, p): 

    """ 

    Compute the expected transitions based on the pre-specified distribution. 

 

    Args: 

    total_transitions (dict): Total transitions from each state. 

    p (list): Pre-specified distribution. 

 

    Returns: 

    np.array: Expected transition matrix. 

    """ 

    expected_transitions = np.zeros((3, 3)) 

     

    for i in range(3): 

        for j in range(3): 

            expected_transitions[i, j] = total_transitions[i+1] * p[j] 

     

    return expected_transitions 

 

def compute_chi_square(observed, expected): 

    """ 
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    Compute the chi-square statistic. 

 

    Args: 

    observed (np.array): Observed transition matrix. 

    expected (np.array): Expected transition matrix. 

 

    Returns: 

    float: Chi-square statistic. 

    """ 

    chi_square = np.sum((observed - expected)**2 / expected) 

    return chi_square 

 

# Compute transition matrices and totals for both sequences 

observed_iid, total_transitions_iid = compute_transition_matrix(sequence_iid) 

observed_markov, total_transitions_markov = compute_transition_matrix(sequence_markov) 

 

# Compute expected transition matrices 

expected_iid = compute_expected_transitions(total_transitions_iid, p) 

expected_markov = compute_expected_transitions(total_transitions_markov, p) 

 

# Compute chi-square statistics 

chi_square_iid = compute_chi_square(observed_iid, expected_iid) 

chi_square_markov = compute_chi_square(observed_markov, expected_markov) 

 

# Print results 

def print_matrix(title, matrix): 

    print(f"{title}:") 

    for row in matrix: 

        print(" ".join(f"{val:8.1f}" for val in row)) 

    print() 

 

# Print results 

print_matrix("Observed Transitions (i.i.d)", observed_iid) 

print_matrix("Expected Transitions (i.i.d)", expected_iid) 

print(f"Chi-square Statistic (i.i.d): {chi_square_iid:.2f}\n") 

 

print_matrix("Observed Transitions (non i.i.d)", observed_markov) 

print_matrix("Expected Transitions (non i.i.d)", expected_markov) 

print(f"Chi-square Statistic (non i.i.d): {chi_square_markov:.2f}") 
 

Dynamic Programming  

import dataclasses 

import itertools 

import math 
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import typing as t 

 

import numpy as np 

import rich 

from rich.table import Table 

 

DELTA = 0.1  # The amount by which the allocation changes in each action 

 

# Type alias for a 3-element numpy array of floats 

Allocation: t.TypeAlias = np.ndarray[t.Literal[3], np.dtype[np.float64]] 

ApprovalRates: t.TypeAlias = np.ndarray[t.Literal[3], np.dtype[np.float64]] 

SingleState: t.TypeAlias = t.Literal[1, -1] 

 

@dataclasses.dataclass 

class State: 

    short: int 

    expanded: tuple[SingleState, SingleState, SingleState] 

    approval_rates: ApprovalRates 

 

    STATE_MAP: t.ClassVar[dict[tuple[SingleState, SingleState, SingleState], int]] = { 

        (1, 1, 1): 1, 

        (1, 1, -1): 2, 

        (1, -1, 1): 3, 

        (1, -1, -1): 4, 

        (-1, 1, 1): 5, 

        (-1, 1, -1): 6, 

        (-1, -1, 1): 7, 

        (-1, -1, -1): 8, 

    } 

    REVERSE_STATE_MAP: t.ClassVar[ 

        dict[int, tuple[SingleState, SingleState, SingleState]] 

    ] = {v: k for k, v in STATE_MAP.items()} 

 

    @classmethod 

    def from_short(cls, short: int, approval_rates: ApprovalRates) -> "State": 

        return cls(short, cls.REVERSE_STATE_MAP[short], approval_rates=approval_rates) 

 

    @classmethod 

    def from_expanded( 

        cls, 

        expanded: tuple[SingleState, SingleState, SingleState], 

        approval_rates: ApprovalRates, 

    ) -> “State”: 

        return cls(cls.STATE_MAP[expanded], expanded, approval_rates=approval_rates) 

 

    @classmethod 

    def from_approval_rates( 

        cls, prev_approval_rates: ApprovalRates, curr_approval_rates: ApprovalRates 

    ) -> “State”: 

        assert len(prev_approval_rates) == len(curr_approval_rates) == 3 

        return cls.from_expanded( 

            tuple(  # type: ignore 

                1 if qi >= pi else -1 

                for pi, qi in zip(prev_approval_rates, curr_approval_rates) 

            ), 

            approval_rates=curr_approval_rates, 
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        ) 

 

@dataclasses.dataclass 

class Business: 

    day: int 

    prev_state: State | None 

    curr_state: State 

    prev_allocation: Allocation | None 

    curr_allocation: Allocation 

    action: int 

    n_transactions: int 

    curr_reward: float 

    prev_business: "Business | None" = None 

 

    def __rich_repr__(self): 

        table = Table(title="Business") 

        table.add_column("Attribute") 

        table.add_column("Value") 

        table.add_row("Day", f"{self.day}") 

        table.add_row( 

            "Prev State", f"{self.prev_state.short if self.prev_state else None}" 

        ) 

        table.add_row("Curr State", f"{self.curr_state.short}") 

        if self.prev_allocation is not None: 

            table.add_row( 

                “Prev Allocation”, 

                ", ".join([f"{x:.3f}" for x in self.prev_allocation]), 

            ) 

        table.add_row( 

            "Curr Allocation", ", ".join([f"{x:.3f}" for x in self.curr_allocation]) 

        ) 

        table.add_row("Action", f"{self.action}") 

        table.add_row("N Transactions", f"{self.n_transactions}") 

        table.add_row("Curr Reward", f"{self.curr_reward:.3f}") 

        table.add_row("Total Reward", f"{self.total_reward:.3f}") 

        return table 

 

    @property 

    def total_reward(self): 

        return self.curr_reward + ( 

            self.prev_business.total_reward if self.prev_business else 0 

        ) 

 

def get_approval_rates(allocation: Allocation) -> ApprovalRates: 

    ““"Calculate the approval rates for a given allocation of providers.""" 

 

    # Define the coefficients for the approval rate function per provider 

    provider0 = (2.0, -1.0, 0.3) 

    provider1 = (1.0, -0.9, 0.6) 

    provider2 = (0.0, -0.3, 0.9) 

 

    def approval_rate_for_provider( 

        allocation: float, alpha: float, beta: float, gamma: float 

    ) -> float: 

        exp_term = np.exp(alpha + beta * allocation + gamma * allocation**2) 

        return np.round(exp_term / (1 + exp_term), 3) 
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    return np.array( 

        [ 

            approval_rate_for_provider(allocation[0], *provider0), 

            approval_rate_for_provider(allocation[1], *provider1), 

            approval_rate_for_provider(allocation[2], *provider2), 

        ] 

    ) 

 

def compute_new_state_allocation(action: int, allocation: Allocation, delta: float): 

    # sourcery skip: extract-duplicate-method, move-assign-in-block, switch 

    allocation = allocation.copy() 

    if action == 1: 

        return allocation 

    elif action == 2:  # a=2 means (+,+,-) 

        amount_to_adjust = allocation[2] * delta 

        ratio = allocation[1] / (allocation[0] + allocation[1]) 

        allocation[2] = 0.9 * allocation[2] 

        allocation[1] = allocation[1] + amount_to_adjust * ratio 

        allocation[0] = 1 - allocation[1] - allocation[2] 

        return allocation 

    elif action == 3:  # a=3 means (+,-,+) 

        amount_to_adjust = allocation[1] * delta 

        ratio = allocation[2] / (allocation[0] + allocation[2]) 

        allocation[1] = 0.9 * allocation[1] 

        allocation[2] = allocation[2] + amount_to_adjust * ratio 

        allocation[0] = 1 - allocation[1] - allocation[2] 

        return allocation 

    elif action == 4:  # a=4 means (-,+,+) 

        amount_to_adjust = allocation[0] * delta 

        ratio = allocation[2] / (allocation[1] + allocation[2]) 

        allocation[0] = allocation[0] - amount_to_adjust 

        allocation[2] = allocation[2] + amount_to_adjust * ratio 

        allocation[1] = 1 - allocation[0] - allocation[2] 

        return allocation 

    elif action == 5:  # a=5 means (-,+,-) 

        amount_to_adjust = (allocation[0] + allocation[2]) * delta 

        ratio = 0.5 

        allocation[1] = allocation[1] + amount_to_adjust 

        allocation[2] = allocation[2] - amount_to_adjust * ratio 

        allocation[0] = 1 - allocation[1] - allocation[2] 

        return allocation 

    elif action == 6:  # a=6 means (-,-,+) 

        amount_to_adjust = (allocation[0] + allocation[1]) * delta 

        ratio = 0.5 

        allocation[2] = allocation[2] + amount_to_adjust 

        allocation[0] = allocation[0] - amount_to_adjust * ratio 

        allocation[1] = 1 - allocation[0] - allocation[2] 

        return allocation 

    elif action == 7:  # a=7 means (+,-,-) 

        amount_to_adjust = (allocation[1] + allocation[2]) * delta / 2 

        allocation[1] = allocation[1] - amount_to_adjust 

        allocation[2] = allocation[2] - amount_to_adjust 

        allocation[0] = 1 - allocation[1] - allocation[2] 

        return allocation 

    else: 
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        raise ValueError(f"Invalid action: {action}") 

 

def transition( 

    business: Business, 

    action: int, 

    delta: float, 

    n_transactions: int | None = None, 

    horizon: int = 1, 

) -> Business: 

    n_transactions = ( 

        business.n_transactions if n_transactions is None else n_transactions 

    ) 

    # First day take action and compute the reward 

    final_allocation = new_allocation = compute_new_state_allocation( 

        action, business.curr_allocation, delta 

    ) 

    new_approval_rates = get_approval_rates(new_allocation) 

    final_state = new_state = State.from_approval_rates( 

        business.curr_state.approval_rates, new_approval_rates 

    ) 

    curr_reward = compute_total_reward( 

        n_transactions, new_allocation, new_approval_rates 

    ) 

    for _ in range(1, horizon): 

        # For all remaining days, don't take any action 

        new_allocation = compute_new_state_allocation(1, new_allocation, delta) 

        new_approval_rates = get_approval_rates(new_allocation) 

        new_state = state.from_approval_rates( 

            new_state.approval_rates, new_approval_rates 

        ) 

        curr_reward = curr_reward + compute_total_reward( 

            n_transactions, new_allocation, new_approval_rates 

        ) 

    return Business( 

        day=business.day + horizon, 

        prev_state=business.curr_state, 

        curr_state=final_state, 

        prev_allocation=business.curr_allocation, 

        curr_allocation=final_allocation, 

        action=action, 

        n_transactions=n_transactions, 

        curr_reward=curr_reward, 

        prev_business=business, 

    ) 

 

def compute_total_reward( 

    n_transactions: int, allocation: Allocation, approval_rates: ApprovalRates 

): 

    return n_transactions * sum(allocation * approval_rates) 

 

def sdp( 

    businesses: list[Business], 

    delta: float, 

    n_transactions: int | None = None, 

    debug: bool = False, 

    horizon: int = 1, 
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) -> list[Business]: 

    # sourcery skip: use-itertools-product 

    business_day = businesses[0].day 

    assert all(business.day == business_day for business in businesses) 

    all_states = [x.curr_state.short for x in businesses] 

    assert len(all_states) <= len(State.STATE_MAP) 

    next_businesses = [] 

    for business in businesses: 

        for action in range(1, 8): 

            next_business = transition( 

                business, action, delta, n_transactions, horizon=horizon 

            ) 

            next_businesses.append(next_business) 

    grouped_by_state = itertools.groupby( 

        sorted(next_businesses, key=lambda b: b.curr_state.short), 

        key=lambda b: b.curr_state.short, 

    ) 

    grouped_by_state = [(key, list(group)) for key, group in grouped_by_state] 

    display_debug_info(debug, business_day, grouped_by_state) 

    result = { 

        key: max(group, key=lambda b: b.total_reward) for key, group in grouped_by_state 

    } 

    return list(result.values()) 

 

def display_debug_info( 

    debug: bool, business_day: int, grouped_by_state: list[t.Tuple[int, list[Business]]] 

): 

    table = Table(title=f"Debug Day: {business_day}") 

    table.add_column("Group State") 

    table.add_column("Curr State") 

    table.add_column("Action") 

    table.add_column("Prev State") 

    table.add_column("Curr Allocation") 

    table.add_column("Curr Approval Rates") 

    table.add_column("Curr Reward") 

    table.add_column("Total Reward") 

    for the state, group in grouped_by_state: 

        max_reward = max(b.curr_reward for b in group) 

        for business in the group: 

            style = ( 

                "bold green" if math.isclose(business.curr_reward, max_reward) else "" 

            ) 

            table.add_row( 

                f"{state}", 

                f"{business.curr_state.short}", 

                f"{business.action}", 

                f"{business.prev_state.short}",  # type: ignore 

                ", ".join([f"{x:.3f}" for x in business.curr_allocation]), 

                ", ".join([f"{x:.3f}" for x in business.curr_state.approval_rates]), 

                f"{business.curr_reward:.3f}", 

                f"{business.total_reward:.3f}", 

                style=style, 

            ) 

        table.add_row( 

            "---", 

            "---", 
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            "---", 

            "---", 

            "---", 

            "---", 

            "---", 

        ) 

    if debug: 

        rich.print(table) 

 

def main(n_days: int, seed: int = 42, horizon: int = 1, debug: bool = False) -> float: 

    rng = np.random.default_rng(seed) 

    assert n_days % horizon == 0, "n_days must be divisible by horizon" 

    businesses = [ 

        Business( 

            day=0, 

            prev_state=None, 

            curr_state=State.from_approval_rates( 

                np.r_[0, 0, 0], np.r_[0.842, 0.679, 0.496] 

            ), 

            prev_allocation=np.r_[0.37, 0.365, 0.265], 

            curr_allocation=np.r_[0.37, 0.365, 0.265], 

            action=1, 

            n_transactions=2400, 

            curr_reward=0, 

        ) 

    ] 

    n_transactions = 2400 

    print("Day 0") 

    print(f"Curr Allocation: {businesses[0].curr_allocation}") 

    print(f"Curr Approval Rates: {businesses[0].curr_state.approval_rates}") 

    print("N transactions", businesses[0].n_transactions) 

    print("Current state", businesses[0].curr_state.short) 

    for day in range(n_days // horizon): 

        businesses = sdp( 

            businesses, 

            DELTA, 

            n_transactions=n_transactions, 

            debug=debug, 

            horizon=horizon, 

        ) 

        max_reward = max(business.total_reward for business in businesses) 

        table = Table(title=f"Day: {(day + 1) * horizon}") 

        table.add_column("Curr State") 

        table.add_column("Action") 

        table.add_column("Prev State") 

        table.add_column("Curr Allocation") 

        table.add_column("Curr Approval Rates") 

        table.add_column("Curr Reward") 

        table.add_column("Total Reward") 

        for business in businesses: 

            style = ( 

                "bold green" if math.isclose(business.total_reward, max_reward) else "" 

            ) 

            table.add_row( 

                f"{business.curr_state.short}", 

                f"{business.action}", 
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                f"{business.prev_state.short}",  # type: ignore 

                ", ".join([f"{x:.3f}" for x in business.curr_allocation]), 

                ", ".join([f"{x:.3f}" for x in business.curr_state.approval_rates]), 

                f"{business.curr_reward:.3f}", 

                f"{business.total_reward:.3f}", 

                style=style, 

            ) 

        rich.print(table) 

        n_transactions = 2400  # rng.integers(1000, 3000) 

        # n_transactions = rng.integers(1000, 3000) 

    best_business = max(businesses, key=lambda b: b.total_reward) 

    print("Business Trace") 

    best_reward = best_business.total_reward 

    trace = [best_business] 

    while best_business: 

        best_business = best_business.prev_business 

        if best_business: 

            trace.append(best_business) 

    for business in reversed(trace): 

        rich.print(business.__rich_repr__()) 

    return best_reward 

 

if __name__ == "__main__": 

    horizon = int(input("Enter the horizon: ")) 

    main(250, horizon=horizon) 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


